Particle Physics MS

1. B
2. D
3. B
4. B
5. C
6. (a) (Total / sum of) Kinetic energy conserved
(b) These diagrams could appear in part c and should be credited in (b)

[allow first mark for any triangle or parallelogram ie do not insist on right angle]
right angle labelled or approximately by eye / diagonal should be labelled "before" or "initial" or appropriately recognisable as incoming particle
(c) KE as formula eg $1 / 2 \mathrm{mu}^{2}=1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{~ms}^{2} / \mathrm{p}^{2} / 2 \mathrm{~m}=\mathrm{p}^{2} / 2 \mathrm{~m}+\mathrm{p}^{2} / 2 \mathrm{~m} \quad 1$

Recognition of "Pythagoras" 1
(d) (i) Electric field 1

Does work on proton/applies a force /repel/attract 1
$\mathrm{qV} / \mathrm{Fd} / \mathrm{Eq} \longrightarrow 1$
(ii) Mass of incoming proton larger (than rest mass) (1)

Due to moving near speed of light/high speed/high energy/relativistic (1)

Alt answer : image not in plane of two protons after the event (2) Max 2
(e) Out of the plane of paper 1
7. (a) $2 / 3$ that of a proton $/ 2 / 3 \times 1.6 \times 10^{-19}(\mathrm{C}) \quad 1$
(b) Mass $=80 \mathrm{MeV} / \mathrm{c}^{2} \quad 1$
charge $=+1 / 3 \quad 1$
(c) Recognition M means $10^{6} \quad 1$

Convert eV to J or divide by c² 1
$\begin{array}{ll}\text { eg } 4 \times 10^{6} \times 1.6 \times 10^{-19} \text { or } / 9 \times 10^{16} & 1 \\ \text { Answer } 7.1 \times 10-30(\mathrm{~kg}) & 1\end{array}$
(d) (i) Kaon Meson 1

Omega baryon 1
(ii) $\mathrm{K}^{-}+\mathrm{p} \quad 1$
$=\mathrm{K}^{+}+\mathrm{K}^{\mathrm{o}}+\Omega^{-}$
[accept p or p^{+};do not accept K for K^{o};signs must be top right] 1
(iii) Kaon plus $=\mathrm{u} \bar{s} \quad 1$

Kaon neutral $=\mathrm{d} \bar{s}$ or s $\bar{d} \quad 1$
[both marks can be inferred if equation in d (ii) is fully written in quark combinations)
(iv) QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence

Momentum conserved (1)
Charge conserved (1)
Energy / mass conserved (1)
$\mathrm{E}=\mathrm{mc}^{2(1)}$
Kinetic Energy (of kaon minus) is responsible (1)
Momentum of three particles after = momentum of kaon before (1)
Total charge 0 / charge before and after is $0(\mathbf{1})$
Conservation of Baryon no, quark no, strangeness (1)
allow only 1 mark max from these 3
8. C
9. C
10. D

11. QWC

QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence
Observations:
Most alpha went straight through (1)
Some deflected (1)
(Very) few came straight back/large angle (1)
Conclusions:
Atom mainly (empty) space (1)
Nucleus contains most of the mass (1)
(Nucleus) very small/tiny (1)
(Nucleus) charged /positive (1)
12. (a) u \bar{d} identified (1) 1
(b) Conversion of G (1)

Conversion of either eV or divided by c2 (1)
$2.5 \times 10^{-28}(\mathrm{~kg})(\mathbf{1})$
eg
$m=0.14 \times 10^{9} \times 1.6 \times 10^{-19} / 9 \times 10^{16}$
(c) $\mathbf{Q W C}$

QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence

Electric fields:
Electric field provides force on the charge/proton (1) gives energy to /work done / $\mathrm{E}=\mathrm{qV}$ / accelerate protons (1)
Magnetic fields:
Force on moving charge/proton (1)
Produces circular path/centripetal force (1)
labelled diagram showing Dees
with E field indicated across gap OR B field through Dees (1)
E field is reversed/alternates (1)
(d) QWC

QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence
momentum (1)
Zero / negligible momentum before (1)
To conserve momentum (fragments go in all directions) (1)
13. (a) (i) measured thickness of lead $4-5 \mathrm{~mm}$ (1) measured radius $32-38 \mathrm{~mm}$ (1)
Value between $38-57 \mathrm{~mm}$ (1)
Eg actual radius $=35 \mathrm{~mm} \times 6 \mathrm{~mm} / 4.5 \mathrm{~mm}$
(ii) Use of $p=\operatorname{Bqr}$ [any two values sub] (1)

Answer range $9.1 \times 10^{-21}-1.4 \times 10^{-20} \mathrm{~N}$ s or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$ [allow ecf](1)
(b) Track gets more curved above lead / r smaller above lead (1)
Must be slowing down / less momentum / loses energy (1)
Up [dependent on either answer above] (1)
(c) Into page (1)
[ecf out of page if down in b]
(d) (i) Division by $9.11 \times 10^{-31} \mathrm{~kg}$ (1)

Answer range $1.0-1.6 \times 10^{10} \mathrm{~m} \mathrm{~s}^{-1}(\mathbf{1})$
(ii) greater than speed of light (1)
(impossible) so mass must have increased (1)
14. C
15. C
16. (a) A baryon is a (sub-atomic) particle made up of 3 quarks(1)
(b) $\mathrm{n}(\mathrm{ddu}) \rightarrow \mathbf{(1)}$
p (duu) (1)
17. (a) High frequency or high voltage(1)

Alternating or square wave voltage(1)
(b) No electric field inside cylinders (due to shielding) (1) so no force (on electrons) (1)
(c) As speed increases (along the accelerator), (1) cylinders are made longer so that time in each stays the same(1)
18. The answer must be clear, use an appropriate style and be organised in a logical sequence (QWC)
α-particles fired at (named) metal (film) (1) in a vacuum (1)
Most went straight through or suffered small deflections. (1)
A few were reflected through large angles or some were reflected along their original path (1)
suggesting the mass or charge of the atom was concentrated in a very small volume (1)

5
19. (a) ${ }_{3} \mathrm{Li}^{7}+{ }_{1} \mathrm{P}^{1}={ }_{2} \mathrm{He}^{4}+{ }_{2} \mathrm{He}^{4}$
completing LHS (1)
completing RHS(1)
(b) (i) Charge (1)
(mass/) energy (1)
(ii) Mass of $\mathrm{Li}+\mathrm{p}=7.0143 \mathrm{u}+1.0073 \mathrm{u}=8.0216 \mathrm{u}$ (1)

Mass of 2α-particles $=2 \times 4.0015 u=8.0030 u(1)$
$\Delta m=8.0216 \mathrm{u}-8.0030 \mathrm{u}=0.0186 \mathrm{u}$ $=0.0186 \times 1.66 \times 10^{-27} \mathrm{~kg}=3.09 \times 10^{-29} \mathrm{~kg}(\mathbf{1})$
$\Delta E=c^{2} \Delta m=\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \times 3.09 \times 10^{-29} \mathrm{~kg}=2.78 \times 10^{-12} \mathrm{~J}(\mathbf{1})$
[Allow ecf from equation]
(iii) $=\frac{2.78 \times 10^{-12} \mathrm{~J}}{1.60 \times 10^{-19} \mathrm{~J} \mathrm{eV}^{-1}}=1.74 \times 10^{7} \mathrm{eV}=17.4 \mathrm{MeV}$ (1)

The incoming proton has an energy of $300 \mathrm{keV}=0.30 \mathrm{MeV}$ (1)
So total energy $=17.4 \mathrm{MeV}+0.3 \mathrm{MeV}=17.7 \mathrm{MeV}$ (1)
The calculated energy differs by
$\frac{17.7 \mathrm{Mev}-17.2 \mathrm{MeV}}{1 / 2(17.7+17.2) \mathrm{MeV}} \times 100 \% \approx 3 \%$ (1)
The experiment therefore provides strong evidence for Einstein's prediction (1)
20. (a) Paths of alpha particles

Path A drawn less deflected than B (1)
Path A drawn as a straight line (1)
(b) (i) Why alpha source inside container

Alpha would be absorbed by [accept would not get through] container (material) (1)
(ii) Why the same kinetic energy?

Either

To restrict observation to two variables / closeness of approach and deflection
or so that speed / velocity / (kinetic) energy does not have an effect (on the observation / deflection /results / contact time)
(iii) Why an evacuated container?

Either

so that alphas do not get absorbed by / collide with / get deflected by / stopped by / scattered by / get in the way of / ionise / lose energy to atoms / molecules (of air) [Do not accept 'particles' of the air]
or so that all alphas reach the foil with the same (kinetic) energy

21. Particle classification

Neutron: baryon and hadron (1)
Neutrino: lepton (1)
Muon: lepton (1) 3
22. (i) Conservation laws

First reaction, $\mathrm{Q}: 0+0 \neq 1+1$ (1)
Second reaction B: $1=1+0$ AND Q: $-1=-1+0$ (1)
Hence only Ω^{-}decay possible [based on B and Q conservation for this decay, accept simple ticks and crosses] (1)
(ii) Quark charges

Use of sss $=-1$ to show $s=-1 / 3$ (1)
Hence correct working (from baryons) to show $u=2 / 3$ and $d=-1 / 3$ (1)
23. (a) (i) $1.2 \mathrm{keV}=1.2 \times 10^{3} \times 1.6 \times 10^{-19} \mathrm{~J}$

OR
Use of $e \Delta V$ with e as $1.6 \times 10^{-19} \mathrm{C}$ and V as 1200 V (1)
Use of $\Delta\left(1 / 2 m_{\mathrm{e}} v^{2}\right)$ with m_{e} as $9.1(1) \times 10^{-31} \mathrm{~kg}$. (1)
Correct answer $2.0-2.1 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ (1)
(ii) $1200 \times 8 / 100=96(\mathrm{eV}$ delivered per electron) (1)
$96 / 2.4=40$ (1)
Or
$2.4 \times 100 / 8=30$ (incident eV needed per photon) (1) $1200 / 30=40(1)$

Or
$1200 / 2.4=500$ (photons per electron, ideally) (1) $500 \times(8 / 100)=40(\mathbf{1})$
(b) Electrons on screen repel electrons in beam / force opposes electron motion/decelerating force (1)
Electrons (in beam) decelerated /slowed /
velocity reduced/ work done by electrons (against force) (1)
Electron (kinetic) energy reduced (not ${ }^{-}$shared $^{-}$) (1)
Fewer photons (per electron, stated or implied) (1)
Trace less bright (1)
QoWC (1) Max 4
24. (a) pair of values of k.e. and $v 2$ read from graph / gradient (1)

$$
\begin{align*}
& v^{2}>5 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2} \mathbf{(1)} \\
& \Rightarrow m \mathrm{p}=1.62-1.69 \times 10^{-27}(\mathrm{~kg}) \text { to } 3 \text { s.f. (1) } \tag{3}
\end{align*}
$$

(b) (i) (values $1.3-1.7,3.1-3.5,6.0-6.5)$ any two correct (1)(1)
(ii) $\Delta E=c^{2} \Delta m / E=m c^{2}$ (1)
\Rightarrow one value for $\Delta m(\times 10-28 \mathrm{~kg})(1)$
use of m_{p} from (i) [no mark]
\Rightarrow one value of $\Delta m / m_{\mathrm{p}}:$ about $10 \%, 20 \%, 40 \%$ (1)
5
25. (a) Show sum of quark charges in proton $=+1$
$+2 / 3+2 / 3-1 / 3=(+) 1(1)$
Show sum of quark charges in neutron $=0$
$+2 / 3-1 / 3-1 / 3=0(1)$
[ignore references to e]
(b) (i) • baryon (1)

- meson (1)
(ii) baryon: 3 quarks (1) meson: quark/antiquark (1) [1 for answers reversed or baryon/meson not specified]
(c) any 4 marks from the following examples: high speed means high energy/momentum (1)
may need to overcome (electrostatic) repulsion (1)
more energy available for creating particles (1)
higher energy/momentum/speed means shorter wavelength (1)
reference to $\lambda=h / m v$ or $\lambda=h / p$ (1)
for diffraction/scattering (1)
need λ approx equal to particle spacing/internal structure (1)
$\max 4$
(d) Speeds near the speed of light (1)

26. \quad Recall speed $=s / t(\mathbf{1})$

Use of $s=\pi \mathrm{D}$ (1)
Answer for speed (1)
Conclusion (1)
OR
Use of $v=r \omega$
Use of $\omega=2 \pi \times 20000$
Answer for speed
Conclusion
$v=s / t$
$s=\pi \times 8000(\mathrm{~m})$
$v=\pi \times 8000 \times 20000(\mathrm{~m} / \mathrm{s})$
$v=5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
inaccurate/not possible since speed $>c$
27. (a) 1

18		1	18		1 (1)
O	+	p/H equals	F	+	n (1)
8		1	9		0 (1)

[omitting the n with everything else correct $=1$]
(b) Accelerated through $19 \times 10^{6} \mathrm{~V} / \mathrm{MV}$

Using linear accelerator / cyclotron / particle accelerator / (1) recognisable description (1)
(c) Time taken for half the original quantity/ nuclei /activity to decay (1)

Long enough for (cancer/tumour/body to absorb) and still be active/detected (1)

Will not be in body for too long (1)
(d) Use of $E=m c^{2}$ (1)

Use of $E=h f(\mathbf{1)}$
Use of $v=f \lambda(1)$
$\lambda=2.4 \times 10^{-12} \mathrm{~m}(\mathbf{1})$
eg $9.11 \times 10^{-31} \times 9 \times 10^{16}(\times 2)$
$f=8.2 \times 10^{-14} / 6.6 \times 10^{-34} \mathrm{ecf}$
$\lambda=3 \times 10^{8} / 1.2 \times 10^{20} \mathrm{ecf}$
(e) Conservation of momentum (1)

Before momentum = 0 (1)
so + for one photon and - for other (1) 2 max
28. (a) Calculate the ratio the densities of the atom and the nucleus Density equation [In symbols or numbers] (1)
Show the relationship between density and radius. (1) [Candidates who start by stating that density is inversely proportional to the radius cubed would get both these marks. Candidates who show an expression where the mass is divided by $\frac{4}{3} \pi r^{3}$ would set both these marks. Candidates who write Ratio $=\left(1 / 10^{5}\right)^{3}$ would get both of these marks.]
Factor 10^{-15} established. [Some working must be shown for this mark] (1)

Eg $\left(\right.$ Density $_{\text {atom }}=\frac{m}{\frac{4}{3} \pi r_{\text {atom }}{ }^{3}}$ or Density $\alpha \frac{1}{r^{3}}$
$(\text { Density })_{\text {nucleus }}=\frac{m}{\frac{4}{3} \pi r_{\text {nucleus }}{ }^{3}}$
$\frac{(\text { Density })_{\text {atom }}}{(\text { Density })_{\text {nucleus }}}=\left(\frac{r_{\text {nucleus }}}{r_{\text {atom }}}\right)^{3}$
$=\left(10^{-5}\right)^{3}$

Assumption - (entire) mass of the atom is concentrated in the nucleus[there must be a reference to the nucleus] (1)
[eg mass of the atom =/approx - mass of the nucleus; most / majority of the atom's mass is in the nucleus. The following would not be awarded marks; The atom is mostly empty space; mass of the electrons is negligible; the nucleus is a very dense.]
(b) Observation

A very small percentage of particles [accept 'very few' not just 'a few'. Do not accept 'some'] are deflected through angles greater than $90^{\circ} /$ are back-scattered / deflected back. (1)
[Allow; nearly all / most (alpha) particles pass through
(the atom) without being deflected (showing the atom is
virtually empty space).]
[Accept 'nearly all', not 'many' for the word 'most'.]
29. (a) energy (of proton) converts to mass (1)
$7 \mathrm{TeV}>251 \mathrm{GeV}$, (so enough energy present to create Higgs particle) (1)
(b) (i) calculate rest-mass energy of proton in J (1) comparison with 7 TeV (1)
rest mass energy of proton $-\mathrm{E}=\mathrm{mc}^{2}=1.67 \times 10^{-27} \times \mathrm{c} \times \mathrm{c}$
$=1.5 \times 10^{-10} \mathrm{~J}$
$=1.5 \times 10^{-10} / 1.6 \times 10^{-19}(\mathrm{eV})=9.4 \times 10^{8}(\mathrm{eV})$
much less than 7 TeV .
OR $7 \mathrm{TeV}=7 \times 10^{12} \times 1.6 \times 10^{-19}(\mathrm{~J})$
$=1.12 \times 10^{-6}(\mathrm{~J})$
$\gg 1.5 \times 10^{-10} \mathrm{~J}$
(ii) Appropriate use of 1.6×10^{-19} OR energy from above in J (1)

Answer (1)
momentum $=$ energy $/ \mathrm{c}=7 \times 10^{12} \times 1.6 \times 10^{-19}(\mathrm{~J}) /\left(3 \times 10^{8}(\mathrm{~m} / \mathrm{s})\right)=$ $3.73 \times 10^{-15}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$
(iii) Attempt to use $\mathrm{r}=\mathrm{p} / \mathrm{Bq}$ (1)
two correct subs into formula OR rearrangement (1)
circumference => radius (1)
answer (1)
$r=p / B q$
$B=p / r Q$
$=3.73 \times 10^{-15} /\left[\left(27000 / 2 _\right) \times 1.6 \times 10^{-19}\right](\mathrm{T})$
$=5.4 \mathrm{~T}$
(iv) Yes (stated or clearly implied) (1) because motion and force both horizontal OR motion/force/B must all be perpendicular (1)
30. (i) Add to diagram.

Arrows at A and B , both pointing directly away from the nucleus. (1)
[Arrow end (head or tail) need not touch A/B, but direction must be correct.
Gauge by eye, accept dotted construction lines as indication of intent]
(ii) Calculation of force

Use of $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$ or $F=\frac{k Q_{1} Q_{2}}{r^{2}}$
[ignore error/omission of ' 2 ' and/or ' 79 ' or ' e ' or ' 1.6×10^{-19} ' for this first mark, providing numerator clearly has a product of charges and denominator a distance value squared. Ignore power of 10 errors in values of Q or r]
$2 \times 1.6 \times 10^{-19} \mathrm{C}$ and $79 \times 1.6 \times 10^{-19} \mathrm{C}$ seen (consequential mark, dependent upon correct use of equation previously) (1)
Correct answer $=1.6-1.7 \mathrm{~N}(\mathbf{1})$
Example of answer:
$F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{\left(79 \times 16 \times 10^{-19} \mathrm{C}\right) \times\left(2 \times 1.6 \times 10^{-19} \mathrm{C}\right)}{4 \pi \times 8.85 \times 10^{-12} \mathrm{Fm}^{-1} \times\left(1.5 \times 10^{-13} \mathrm{~m}\right)^{2}}$
$=1.62 \mathrm{~N}$
(iii) Effect on motion of α

Slows down [decelerates] and then speeds up again [accelerates].
(both needed)
[accept 'slows down at A and speeds up at B] (1)
31. (a) (i) Not matter/antimatter pair [stated or implied] (1) particle/antiparticle have same mass OR electron/proton not same mass OR other correct reason (eg electron is fundamental, proton is quarks) (1)
antiparticle to proton is antiproton OR antiparticle to electron is positron/antielectron (1)
(ii) Not matter/antimatter pair [stated or implied] (1) anti to up is anti-up OR anti to down is anti-down (1) up and down have different charge (1)
(b) particles/antiparticles carry opposite charge (1) (component of) field perpendicular to travel (1) (magnetic/LH rule) forces act in opposite directions (1) some pairs uncharged so no separation/deflection (1) [not annihilation] any 2
(c) number $=5000 \times 10^{-12} \mathrm{~kg} / 9.11 \times 10^{-31} \mathrm{~kg}=5.5(5.488) \times 10^{21}(\mathbf{1})$
(d) (i) correct use of $E=m c^{2}$ [subs] (1)
correct use of $E=h f$ and $c=f \lambda$ [rearranged or subbed] (1)
correct answer [ue] (1)
$E=m c^{2}=9.11 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2} \mathrm{~J}\left(=8.199 \times 10^{-14} \mathrm{~J}\right)$
$E=h f=h c / \lambda \Rightarrow \lambda=h c / E$ (1)
$=6.63 \times 10^{-34} \times 3 \times 10^{8} / 8.199 \times 10^{-14} \mathrm{~m}$
$=2.4(2.426$ or 2.42 or 2.43$) \times 10^{-12} \mathrm{~m}$ [ignore omission of both factors of 2] (1)
[factor of 2 wrong is a.e. $=-1$]
[use of $\lambda=h / p$ scores 0]
(ii) this wavelength is not visible light

OR this is x-ray or gamma or high energy photon so need shielding (1) 1

32. B in accelerators:

changes direction of motion of charged particles OR
force/B perpendicular to motion of charged particles
OR ref to LHR
(1) 1
(moving) charged particles stored in circles/circular path/spirals
(1)2
$B q v=m v^{2} / r$
(1)3
cyclotron: $T=2 \pi m / B q$
(1) 4
fixed frequency voltage for acceleration
(1) 5
diag/construction detail [probably on diag]
synchrotron: r fixed, B adjusted as needed
(1) 6
B in detectors:
charged particles \Rightarrow (detectable) curved paths
(1) 8
find sign of charge from sense of curvature
(1) 9
find momentum/speed/energy/mass from $r(=p / B q)$
(1) 10
33. Deductions
(a) (i) The atom is mainly empty space (1)
[The atom must be referred to. The words 'empty' and 'space' must be qualified eg 'there is a large amount of space in the atom' is not sufficient]
(ii) Within the atom there is an area / the nucleus which is positive / charged or more massive than the alpha particle
[If they choose to describe only the mass it must be a comparison ie 'the nucleus is (much) more massive than the alpha'. 'The atom has a dense centre,' 'the nucleus has a large mass' are both insufficient.] \qquad
(b) Explain
(Deflection could have been) repulsion from positive nucleus (1)
(Deflection could have been) attraction towards negative nucleus (1) [The words repulsion and attraction can be described eg ' α deflected away from positive nucleus', ' α is deflected towards a negative nucleus'] [Diagrams showing the path of an alpha deflected by both a negatively and a positively charged nucleus would get both marks] \qquad
(c) Value of n
(4-6) (1)
[Allow minus values]
34. (a) Any 2 from:
momentum conserved (1)
initial momentum zero (1) (Any 2)
$\Rightarrow \quad$ final momentum zero (1)
[opposite charges repel $\Rightarrow \mathrm{xx}$]
(b) $0.140 \mathrm{GeV} / \mathrm{c}^{2}(\mathbf{1})$
$-1.6 \times 10^{-19} \mathrm{C}$ (1)
anti-u, d (1)
(c) Meson (1)
(d) [(1) for 0.14 (alone) or correct use of $\left.10^{9}\right]$ (1)

Minimum energy $=1.4 \times 10^{8}(\mathrm{eV})$ or $0.14 \times 10^{9}(\mathrm{eV})(\mathbf{1}) \square$
[0.14 G is (1)x]
(e) Particles have K.E. (as well as mass) (1)
(f) Use of $\Delta E=c^{2} \Delta m$ [rearrangement OR one correct line subbed) (1) \square correct value (1) \square
eg $\Delta m=\Delta E / c^{2}=0.14 \times 10^{9} \times 1.6 \times 10^{-19} \mathrm{~J} /\left(3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$
Mass loss $=2.5 \times 10^{-28} \mathrm{~kg}$
[ecf from (d)]
35. $\quad \beta$-decay equations
(i) $\mathrm{n}=$ udd and $\mathrm{p}=$ uud (1)
β^{-}and \bar{v} have no quarks / are leptons / are fundamental (1)
(ii) $\mathrm{p} \rightarrow \mathrm{n}(\mathbf{1})$
β^{+}and $v\left[\right.$ on RHS, allow $\left.\mathrm{e}^{+}\right](\mathbf{1)} 2$
36. Antihydrogen
(i) Antiproton [or anti-up quark, anti-down quark] and positron (1)
(ii) $\overline{\mathrm{p}}=-1$ and $\mathrm{e}^{+}=+1$ [accept correct $\overline{\mathrm{u}}, \overline{\mathrm{d}}$ charges for $\left.\overline{\mathrm{p}}\right]$ (1)
$\overline{\mathrm{u}} \overline{\mathrm{u}} \overline{\mathrm{d}}$ (e^{+}fundamental / no quarks) [ecf from (b), credit if in (i)] (1)
(iii) zero / neutral (1)

Antimatter storage
(iv) Annihilates (1)
(On contact) with matter / container / protons / H
OR Not charged: not affected by magnetic fields (1) 2
37. (a) Quality of written communication (1)

Protons drift/move uniformly inside tubes (1)
Accelerate between the tubes/in the gaps (1)
Alternating p.d. reverses while p is in tube (1)
The tubes must get longer as p speeds up (1)
For time inside tube to be constant or to synchronise movement with the pd (1)
(b) (i) Multiply by 419 or 420 (1)

Multiply by $1.6 \times 10^{-19} \mathbf{(1)}$
Correct answer to at least 2 sf (1)
[5.36/5.38/5.4 $\left.\times 10^{-11}(\mathrm{~J})\right]$ [no ue]
$\Delta m=$ energy $\div\left(9.0 \times 10^{16} \mathrm{~m}^{2} \mathrm{~s}^{-2}\right)(\mathbf{1})$
[ecf their energy or 5×10^{-11}] (1)
$\Delta m \div 1.01 \times 1.66 \times 10^{-27} \mathrm{~kg}$ [ecf their $\left.\Delta m\right](\mathbf{1})$
Correct answer (1)
[0.36 or 36%] [Use of 5×10^{-11} gives 33%] (1)
[Accept routes via Δm in u and m_{p} in J]
(ii) Use of $1 / f(\mathbf{1})$

$$
\begin{aligned}
& \therefore \text { time down linac }=420 \div 3.9 \times 10^{8} \mathrm{~s}^{-1} \\
& \text { or } 210 \div 3.9 \times 10^{8} \mathrm{~s}^{-1}(\mathbf{1}) \\
& {\left[t=1.07 / 1.08 / 1.1 \times 10^{-6}(\mathrm{~s}) \text { or } 0.54 \times 10^{-6}(\mathrm{~s})\right]}
\end{aligned}
$$

(c) (i) Fixed target:

Large(r) number of /more collisions or more likely to get collisions
[not easier to get collisions] (1)
Other particle beams produced (1)
(ii) Colliding beams:

More energy available for new particles (1)
$p=0$ so all energy available (1)
Max 2
38. "The standard model"

Everyday matter/atoms: p,n, e [maybe in two places] (1)
Protons / neutrons are made from quarks (1)
p : uud and n:udd (1)
show charge of either $[p: u(+2 / 3) u(+2 / 3) d(-1 / 3) \Rightarrow+1$ OR n: u
$(+2 / 3) d(-1 / 3) d(-1 / 3) \Rightarrow 0](1)$
All baryons have three quarks (1)
Hadrons contain quarks (1)
Electron is fundamental/leptons are fundamental (1)
Electron-neutrino created during β-decay (1)
Max 6
39. Calculation of voltage

Use of $\Delta E=c^{2} \Delta m \mathbf{(1)}$
Use of eV (1)
Correct answer [4.1 $\times 10^{9}(\mathrm{~V})$] [no ue] (1)

Example of calculation:
$\Delta E=c^{2} \Delta m=\mathrm{eV}$
$\Rightarrow V=c^{2} \Delta m / \mathrm{e}=9 \times 10^{16} \times 8000 \times 9.1 \times 10^{-31} / 1.6 \times 10^{-19} \mathrm{~V}$
$=4.1 \times 10^{9} \mathrm{~V}$

Role of magnets

Field deflects/bends/curves the path (1)
Field is at curved parts / field at AD and BC / no field on straight parts (1)
Field perpendicular to page / velocity (1)
Force perpendicular to velocity or field (1)
Force is centripetal / towards centre (1)

Calculation of field strength:
$r=p / B q$ rearranged to $B=p / r q$ (1)
correct substitution of either p OR of r and q (1)
Correct answer [0.124(T), no ue] (1)

Example of calculation:
$r=P / B q \Rightarrow B=P / q r$
$=8000 \times 9.1 \times 10^{-31} \times 3.0 \times 10^{8} / 110 \times 1.6 \times 10^{-19} \mathrm{~T}$
$=0.124 \mathrm{~T}$
40. Conservation laws

Baryon (1)

- 1 (1)

Q: $(-1)+(+1)=(0)+(+1)+(X)(1)$

B: $(0)+(+1)=(0)+(0)+(X)(1)$
Quark content
uud (1)
$u \bar{s}$ (1)
2
41. Conserved quantities

Momentum, charge, (mass-)energy, lepton number (1) (1)
[2 right gets 1 mark; all 3 right get 2 marks]
[Do not credit kinetic energy]
Charge of the pentaquark
$2 \times \frac{+2}{3}+2 \times \frac{-1}{3}+\frac{1}{3}$
$=(+) 1(\mathrm{e})(\mathbf{1})$

Charge on X

Positive since pentaquark was positive, neutron neutral [ecf] (1)
[Reasoning needed]

Possible quark composition for X with explanation
u \bar{s} (1)
Left behind (after removing neutron/udd) (1)

Mass of pentaquark
Conversion from GeV to J or substitution of $c^{2}(\mathbf{1})$
answer [no ue] (1)
$1.54 \times 10^{9} \times 1.6 \times 10^{-19} /\left(3 \times 10^{8}\right)^{2}$
$=2.7 \times 10^{-27} \mathrm{~kg}$
42. Approximate energy of alpha particle in MeV

1. $\quad r=0.09(\mathrm{~m})$ [accept in range $0.07-0.12$] (1) [must have unit if given in cm]
2. $q=2 \times 1.6 \times 10^{-19}(\mathrm{C})(\mathbf{1})$
3. $m=4 \times 1.7 \times 10^{-27}(\mathrm{~kg})(\mathbf{1})$
4. $\quad r=p / B q \Rightarrow p=r B q$ or $v=r B q / m$ (1) [see equation or substitution]
$\left[p=0.09 \times 3.7 \times 3.2 \times 10^{-19} \mathrm{~N} \mathrm{~s}\right.$]
5. $=1.07 \times 10^{-19}(\mathrm{Ns}) \mathbf{O R} v=1.6 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
6. $E=p^{2} / 2 m$ or use of $1 / 2 m v^{2} \mathbf{(1)}$ $\left[E=\left(1.07 \times 10^{-19}\right)^{2} /\left(2 \times 4 \times 1.67 \times 10^{-27}\right) \mathrm{J}\right]$
7. $8.6 \times 10^{, 13} \mathrm{~J}(\mathbf{1})$
$\left(5.4 \mathrm{MeV} / 5.4 \times 10^{6} \mathrm{eV}\right) \quad 7$
8. Base units of eV
(i) Reference to joule (1)

Useful energy equation / units shown [e.g. $1 / 2 m v^{2}, m g h, m c^{2}, F d$, not (1) QVor Pt $]$

(ii) Energy released

146 shown or used (1)
Δm calculation [1.9415, ecf] (1)
Multiply by 930 [allow $E=m c^{2}$ with mass in kg] (1) 1800 MeV [no ue] (1)
44. (i) Decay numbers
${ }_{1}^{1} \mathrm{p}$ and ${ }_{0}^{1} \mathrm{n}$ (1)
${ }_{1}^{0} \beta^{+}$and ${ }_{0}^{0} v(\mathbf{1})$

$$
2
$$

(ii) Tick the boxes

Proton: baryon and hadron only (1)
neutron: baryon and hadron only (1)
β^{+}: lepton and antimatter only (1)
v : lepton only (1)
[only penalise once for including meson] [if both baryon correct but no hadrons 1 mark out of 2 and vice versa]
45. Explanation
energy gained by electron accelerated through $1 \mathrm{~V} / W=Q V(\mathbf{1})$
$W=1.6 \times 10^{-19} \mathrm{C} \times 1 \mathrm{~V}=1.6 \times 10^{-19} \mathrm{~J} \mathbf{(1)}$
Unit of mass
$\Delta E=c^{2} \Delta m$ so $\Delta m=\Delta E / c^{2}$ (1)
GeV is energy $\Rightarrow \mathrm{GeV} / c^{2}$ is mass (1) $\quad 2$
Mass of Higgs boson

$$
\begin{align*}
& m=115 \times\left[10^{9}\right] \times 1.6 \times 10^{-19} /\left(3 \times 10^{8}\right)^{2} \mathbf{(1)} \\
& =2.04 \times 10^{-25} \mathrm{~kg}(\mathbf{1}) \tag{2}
\end{align*}
$$

Antiparticle

Same mass and opposite charge (1)
[Accept Particle and its antiparticle annihilate (\rightarrow photons)] 1
Explanation of need for a magnetic field and why it can be small
Force deflects particles/force produces circular motion (1)
Force is perpendicular to motion/force provides centripetal force (1)
r is large or curvature is small/gentle (1)
reference to $B=p / r Q$ to show why small B is needed (1) 4
46. Particle X
Positive (1) 1
Is a baryon (1) 1
Quark compositions
Proton uud; neutron udd BOTH (1) 1
Explanation and deduction of identity of X
Quality of written communication (1)
Strong / not weak interaction (1)
One strange quark on each side / no flavour change (1)
X is a proton (1) 4
47. Results of experiments and conclusions
Most pass straight through/undeflected (1)
A few deflect/reflect (at large angles) (1)
Small nucleus/mostly empty space (1)
Concentrated mass and/or positive charge (1) 4
How to determine x graphically
Plot $\log N \mathrm{v} \cdot \log (\sin \theta / 2)$ [OR \ln on both sides] [Any base] (1)
Gradient $=x(\mathbf{1})$2
Meaning of numbers in the symbol for the gold nucleus
Bottom number: 79 protons (1)
Top number: $197 \mathrm{~ns}+\mathrm{ps}$)
OR)
197 nucleons) (1)
OR)
$197-79=118 \mathrm{~ns}$) 2

Mass of alpha particle

Mass of alpha particle $\approx 4 \times m_{p}$
$=4 \times 1.67 \times 10^{-27}=6.7[$ or 6.68$] \times 10^{-27} \mathrm{~kg}(\mathbf{1})$
Calculation of electric force
$F=k q_{1} q_{2} / r^{2} \quad$ OR $q_{1} q_{2} / 4 \pi \varepsilon_{0} r^{2}(\mathbf{1})$
$q_{1}=79 \times 1.6 \times 10^{-19} \mathrm{C}$ and $q_{2}=2 \times 1.6 \times 10^{-19} \mathrm{C}$ (1)
[stated or subbed]
$\rightarrow F=14.56 \mathrm{~N}(\mathbf{1})$
48. How properties of particles and antiparticles compare

Same mass/properties, opposite charge (1)

Energy

$E=m c^{2}=1.67 \times 10^{-27} \times\left(3 \times 10^{8}\right)^{2} \mathrm{~J}[m$ or c subbed correctly $]$ (1)
$=1.503 \times 10^{-10} \mathrm{~J}$ [u.e. if comparison made here]
$=1.503 \times 10^{-10} / 10^{9} \times 1.6 \times 10^{-19} \mathrm{GeV}(\mathbf{1})$
$=0.94 \mathrm{GeV}(\mathbf{1})$
[jump to " $\approx 1 \mathrm{GeV}$ " omitting last line scores (1)(1)×]

Survival of anti-atom

Anti-proton meets proton OR positron meets electron OR (anti-atom) meets atom (1)
(leads to) annihilation (1)

Table

	Meson	Baryon	Lepton		
proton		\checkmark		(1)	
antiproton		\checkmark			
electron			\checkmark	(1)	
positron			\checkmark		

Quark structure

Antiproton: $2 \times-2 / 3$ (anti u) $+1 \times+1 / 3$ (anti d) (1)
$=-1(\mathrm{e}$ not needed $)(\mathbf{1})$
$[3 \times \mathrm{d} \Rightarrow-1$ scores $x \times] \quad 2$
49. Rutherford scattering experiment

Most went (nearly) straight through (1)
A small proportion deflected through large angles (1) 2
Arrows to diagram
Two arrows directed away from $\mathrm{N}(\mathbf{1}) 1$
Sketch graph
Speeds equal at A and $B(1)$
A non-zero minimum at $P(\mathbf{1)} 2$

Shape of graph
A to P: Force (component) against velocity so decelerates (1)
P to B: Force (component) in direction of velocity so accelerates (1) 2
Add to diagram
Same initial path but deflected through larger angle (1) 1
Observations
More alpha particles deflected/ alphas deflected through larger angles/fewer pass straight through (1) 1
50. Comparison between antiparticle and its particle pair

Similarity: same mass as its particle pair (magnitude of charge) (1)
Difference: opposite charge/baryon number/(Iepton number / spin) (1)
Quark composition
$\overline{\mathrm{u}} \overline{\mathrm{u}} \overline{\mathrm{d}}$ [OR anti-down etc] (1) $\quad 1$
Baryon number
-1 (1)
Why difficult to store antiprotons
As soon as they contact protons/matter (1)
they annihilate (1) 2

Maximum possible mass
$\times 2$ (1)
$\div 0.93$ or equivalent [OR by using $E=m c^{2}$ to $1.6 \times 10^{-25} \mathrm{~kg}$] (1)
96 (u) OR 97 (u) (1)
[48u x (1) (1)]
Two reasons why interaction cannot take place
Q/charge not conserved (1)
B/baryon number not conserved (1) 2
51. Explanation

Diffraction (1)
Molecular/atomic separation $\cong 1 \mathrm{~nm} /$ de Broglie wavelength (1)
Kinetic energy
Use of $\lambda=h / m \nu$ (1)
Use of k.e. $=1 / 2 m v^{2}$ OR $p^{2} / 2 m(\mathbf{1})$
k.e. $=9.1-9.2 \times 10^{-23} \mathrm{~J}[$ no ecf] (1)
52. Comparison of positron with electron

Same mass (1)
Opposite charge (1) 2
Minimum energy
Use of $E=m c^{2}$ (1)
$=2 \times 9.11 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2} \mathrm{~J}$
$=1.6398 \times 10^{-13} \mathrm{~J}(\mathbf{1})$
[Factor 2 omitted: lose second tick]
$=1.6398 \times 10^{-13} / 1.6 \times 10^{-19}\left(\times 10^{6}\right) \mathrm{MeV}$
$=1.02 \mathrm{MeV}(\mathbf{1})$

How process releases energy

Annihilation (1) 1
Any two from:

- \Rightarrow em radiation/photon(s)
- 2 photons
- 0.51 MeV each (1) (1) Max 2

53. Alpha particle scattering experiment

Quality of written communication (1)
Most alpha went straight through/deflected very little (1)
A tiny minority were deflected through large angles $/>90^{\circ}$ (1)
Atom had a dense/massive nucleus (1)
Most of the atom was empty space/small nucleus (1)
54. Classification of particles
Ξ^{-}is a baryon (1)
Λ is a baryon (1)
π^{-}is a meson (1) 3
[Allow bbm]

Charge of strange quark

Show that $-1=-1 / 3(\mathrm{~d})+-1 / 3(\mathrm{~s})+-1 / 3$ (s) (1)
亿 particle
Λ is neutral (1)
$+2 / 3+-1 / 3+-1 / 3=0$ and uds
OR charge conservation $(-1)=0+(-1)(\mathbf{1}) 2$
55. Corrected errors
line 3 Mesons are made from q and antiq (1) (1) OR leptons are fundamental/not made from smaller etc.
line 4 as line 3 [only one (1) for same correction made twice]
OR quarks, leptons, neutrinos, and others (1)
line 6 Neutron is made from $\mathbf{3}$ q s (1) (1)
OR meson is made from q and antiq [with restriction as in line 4]
line 10. \qquad energy [instead of momentum] (1) (1)

Max 6
56. Table

(i) particle	(ii) quark content	(iii) antiparticle	(iv) quark content
proton	uud	$\overline{\mathbf{p}}$	$\overline{\mathbf{u u} \overline{\mathbf{d}}}$
π^{-}	$\mathrm{d} \overline{\mathrm{u}}$	π^{+}	
K^{0}	$\mathrm{~d} \overline{\mathrm{~s}}$	$\overline{\mathbf{K}}^{0}$	
$\mathbf{s \overline { d }}$			

Shaded boxes show answers: circled terms count as one.
Proton is uud 1
antiproton or $\overline{\mathbf{p}}$ is $\overline{\mathbf{u u d}}$ [allow $\overline{\mathrm{p}}$ or p-bar] 1
π^{+} 1
Anti K^{0} is $\overline{\mathbf{K}}^{0}$ [allow K^{0}-bar] 1
Quark composition is ud and sd 1
57. Outline of evidence from Geiger's and Marsden's scattering experiment

Most alpha particles went (almost) straight through (1)
Some or a few deflected at larger angles $/>90^{\circ} /$ rebounded (1)
A tiny minority [e.g. 1 in 8000] were deflected at angles $>90^{\circ}$ OR rebounded (1)

Suggestion

No large deflections/all go (almost) straight through (1)

Explanation

No concentrated charge/mass OR no massive object (to hit) no dense
object to hit [consequent] (1)
58. Fundamental particle

A particle which cannot be further divided/which has no "parts" inside it/one of the 12 particles of which all matter is made (1)
[Not "one which cannot decay to another particle"]

Circled fundamental particles in list (2)
Positron and muon
[If more than two circled, -1 for each extra one]

Explanation

Any three from:
Quality of written communication (1)
Mesons are composed of a q and an $\overline{\mathrm{q}}$ (1)
These have charges $\pm 2 / 3$ and $\pm 1 / 3$ (1)
Shows all possibilities ($+1,0,-1$) OR other convincing
arithmetic to show max +1 (1) Max 3
59. Cathode Ray Tube

Electron emission

- Heating effect (due to current) (1)
- (Surface) electrons (break free) because of energy gain (1)
[Thermionic emission scores both marks]

Electron motion towards anode

The electrons are attracted to/accelerated by the positive anode (1)

Energy

Electron energy $=\left(10 \times 10^{3} \mathrm{~V}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)$
$=1.6 \times 10^{-15} \mathrm{~J}$
Correct use of 1.6×10^{-19} OR use of $10 \times 10^{3} \mathbf{(1)}$
Answer (1)

Number of electrons per second

Number each second $=\frac{1.5 \times 10^{-3} \mathrm{~A}}{1.6 \times 10^{-19} \mathrm{~J}}$
$9.4 \times 10^{15} \mathrm{~s}^{-1}$
Correct conversion mA $\rightarrow \mathrm{A}$
Answer (1)

Rate

Energy each second $=\left(9.4 \times 10^{15} \mathrm{~s}^{-1}\right)\left(1.6 \times 10^{-15} \mathrm{~J}\right)(\mathbf{1})$
$=15 \mathrm{Js}^{-1}(\mathrm{~W}) / 14.4 \mathrm{Js}^{-1}(\mathbf{1})$
[ecf their energy]
60. (i) Tracks (of alphas) are the same length/alphas travel same or equal distance (1)
(ii) $\mathrm{H} / \mathrm{p}+\mathrm{Li} \rightarrow 2 \alpha / 2 \mathrm{He}(\mathbf{1})$
${ }_{1}^{1} \mathrm{p}$ and ${ }_{2}^{4} \mathrm{He}$ correctly labelled (1)
${ }_{3}^{7} \mathrm{Li}(\mathbf{1})$
(iii) Mass defect $=0.01865 \mathrm{u}(\mathbf{1})$

Either	Or
Use of $\times 1.66 \times 10^{-27}$	Use of $\times 930 \mathbf{(1)}$
Use of $\times 9.0 \times 10^{16}$	Use of $\times 1.6 \times 10^{-13} \mathbf{(1)}$
$\Rightarrow 2.79 \times 10^{-12} \mathrm{~J}$	$\Rightarrow 2.78 \times 10^{-12} \mathrm{~J} \mathbf{(1)}$

Assume: proton has zero/very little k.e. (1) Max 4
61. How diagram confirms pion is negatively charged

Any two from:

- bends opposite way to proton
- reference to magnetic interaction/Fleming's left-hand rule
- proton $+\Rightarrow$ pion - (1) (1)

Charge carried by lambda particle

Neutral (1)
because charge conserved OR $+1-1 \Rightarrow 0$ OR λ not ionising/no track (1)

Deduction
$r_{\text {pion }}<r_{\text {proton }} /$ straighter / less curved (1)
\Rightarrow since $r=p / B Q\left(P_{\text {pion }}<P_{\text {proton }}\right)(\mathbf{1})$

Scale drawing

2 straight lines $l_{\mathrm{pr}}>l_{\mathrm{pi}} \mathbf{(1)}$
Orientation of lines (49°) joined correct way (1)
Answer $10 \pm 1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ (1)

Classification of particles

baryon meson
pion
\checkmark (1)
lambda $\quad \checkmark$ (1)

Charge of a down quark

$-1 / 3$ (e) (1) 1

62. Topic C - Nuclear and Particle Physics

Similarly
Same mass
Difference
Charge OR baryon number OR uud quarks $\rightarrow \overline{\mathrm{uu}} \bar{d}$
Any two lepton pairs from the following:
$\mathrm{e}^{-} \mathrm{e}^{+}$(
$\mu^{-} \mu^{+}$(NOT e.g. muon and antimuon $/ \mu \bar{\mu}$
$\tau-\tau+$
$v_{\mathrm{e}} \bar{v}_{\mathrm{e}}$)
$\left.\begin{array}{lll}v_{\mu} \bar{v}_{\mu} \\ v_{\tau} \bar{v}_{\tau}\end{array}\right\} \quad$ 0R just $v \bar{v} \quad$ (2) $\quad 2$

Collision
Particle and antiparticle annihilate/produce a burst of energy/of photons
/of gamma rays (1)
63. Speed of electron

Selection of $\lambda=h / p$ and $p=m v \quad$ (1)
$m=9.11 \times 10^{-31} \quad$ (1)
$7.2-7.3 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
Kinetic energy
Use of $E_{\mathrm{k}}=1 / 2 m v^{2} \quad$ (1)
147 - 152 [ecf] (1)
High energy electron
Nucleus tiny/a lot smaller so λ very small (1)
v or p very large [consequent] (1)
2
64. Quarks: What is meant by "charge $=+2 / 3$ "
sign: +/positive/sign same as proton/sign opposite to electron (1)
size: 2/3 charge on a proton / electron (1)
2

Mass of strange quark in kilograms

$m=0.2 \mathrm{GeV} / c^{2}$
$=0.2 \times 10^{9} \times 1.6 \times 10^{-19}(\mathbf{1})$
$/ 9 \times 1016$
$=3.6 \times 10^{-28} \mathrm{~kg}(\mathbf{1})$

Charge and mass of anti-particle to the charmed quark
Charge: $-\frac{2}{3}$ (1)
Mass: $1.3 \mathrm{GeV} / c^{2}$ [No unit penalty for omitting $\mathrm{GeV} / \mathrm{c}^{2}$] (1)

Prediction of top quark

Symmetry of the model / 3rd generation partner / other valid statement
Reason for length of time to find experimental evidence for top quark
High energy needed (to create it) / needs a big accelerator/other valid reason

Use of conservation law to explain prediction
Momentum (in context)
Total momentum $=0$ OR $m_{\mathrm{t}} \mathcal{v}_{\mathrm{t}}=m_{\mathrm{b}} \nu_{\mathrm{b}} \mathrm{OR}$ in words
$m_{\mathrm{t}} \gg m_{\mathrm{b}} \rightarrow v_{\mathrm{t}}$ « $\nu_{\mathrm{b}} /$ greater mass $(\rightarrow$ lower velocity $)$
65. Atom is neutral (1)

Quark composition is $\overline{u u} \bar{d} \quad$ (1)
Antiproton is $(-2 / 3)+(-2 / 3)+(+1 / 3)(=-1) \quad$ (1)
Explanation:
As soon as it touches the container/matter (1)
(Matter and antimatter) annihilate (1)
[Not "cancel"; not "react"]

Completion of table:

Quarks			Charge
up	charm	TOP	$+2 / 3$
down	strange	BOTTOM	$-1 / 3$

[OR TRUTH \& BEAUTY]
[Both needed for 1 mark]
(i) Neutral strange meson: $s \bar{d}$ OR d \bar{s}
(ii) Positive charmed meson: $\overline{\mathrm{C}} \overline{\mathrm{d}}$ OR c $\overline{\mathrm{s}}$ (1)
(iii) Neutral strange baryon: uss/css/uds/cds OR any of their antiparticles, e.g. $\overline{\mathrm{u}} \overline{\mathrm{s}} \overline{\mathrm{s}}$ (1)

3
66. Conservation laws:
(i) Charge: $(-1)+(+1)=(0)+(-1)+(+1)+(0) \quad$ (1) Baryon number: $(0)+(+1)=(+1)+(0)+(0)+(0) \quad$ (1) [So possible, no mark]
(ii) Charge: $(+1)+(+1)=(+1)+(+1)+(+1)+(-1) \quad$ (1) Baryon number: $(+1)+(+1)=(+1)+(+1)+(+1)+(-1) \quad$ (1) 4 [So possible, no mark]
67. Isotope of lead:

$$
{ }_{82}^{206} \mathrm{~Pb}
$$

Other particles:

(82)
electr
ons
1

How appropriate number of quarks can combine:
3 quarks involved (1)
$2 \times+2 / 3+1 \times-1 / 3=+1(1)$

Explanation:

High energy is needed/high temperature/high speed (1)
Mention of $E \rightarrow m$ OR $E=m c^{2}$ (1)
Description:
Relates to electron (1)
e.g. charge +1 /antiparticle/annihilates with (1) 2
68. Charge on strange quark $=-1 / 3 \mathbf{(1)} 1$

Conservation law:
Charge $-(-1)+(+1) \rightarrow(0)+X / b y$ charge conservation (1)
X is neutral (1)

Particle X is a meson (1)

Baryon number conservation (0) + (+1) $\rightarrow(+1)+(0)(\mathbf{1})$
OR discussion in terms of total number of $q+\bar{q}=5$ OR $\Sigma q-\bar{q}=3$
Composition of X is $s \bar{d}[0 / 3$ if not $q \bar{q}](\mathbf{1})$
Justify S quark:

This is not a weak interaction/only a weak interaction can change quark type/this is a strong interaction/strangeness is conserved/ quark flavour cannot change (1)

Justify $\overline{\mathrm{d}}$ quark:
X neutral; $\mathrm{s}-1 / 3 ; \overline{\mathrm{d}}+1 / 3$. [e.c.f. if $\mathrm{s}=-1 / 3$ in first line.]
For the third mark accept any $\mathrm{q} \overline{\mathrm{q}}$ pair that creates a meson of the charge deduced for X above. (1)
[The justification for both q and $\overline{\mathrm{q}}$ can be done also by tracking individual quarks]
69. Velocity of protons:

$$
\begin{aligned}
& p=B q r \quad \Rightarrow \quad \quad \mathrm{v}=\frac{B q r}{m} \mathbf{(1)} \\
& \mathrm{v}=\frac{0.2 \times 1.60 \times 10^{-19} \times 1.5}{1.67 \times 10^{-27}}=2.9 \times 10^{7} \mathrm{~ms}^{-1} \mathbf{(1)}
\end{aligned}
$$

[must have 2.9]

$$
\begin{equation*}
\approx \quad \frac{3 \times 10^{8}}{10}\left(\mathrm{~ms}^{-1}\right)(\mathbf{1}) \tag{3}
\end{equation*}
$$

Time for last semi-circle of orbit:
$t=\frac{d}{v}=\frac{\pi \times 1.5}{2.87 \times 10^{7}}$ (1)
$1.6(4) \times 10^{-7} \mathrm{~s}(\mathbf{1})$
Frequency of accelerating p.d.
$f=\frac{1}{t}=3.0 \mathrm{MHz}$ [allow ecf] (1)
70. Wavelength of photon:
$2 E$ (1)
$=135 \times 10^{6} \times 1.6 \times 10^{-19}(\mathbf{1})$
$\Rightarrow E=1.08 \times 10-11 \mathrm{~J}(\mathbf{1})$
$E=h f=\frac{h c}{\lambda}(\mathbf{1})$
$\Rightarrow \quad \lambda=\frac{h c}{E}$
$\lambda=1.84 \times 10^{-14} \mathrm{~m}(\mathbf{1})$
71. Completion of nuclear equation:

One mark for top line all correct (1)
One mark for bottom line all correct

$$
\begin{equation*}
{ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{p} \rightarrow{ }_{4}^{7} \mathrm{Be}+{ }_{0}^{1} \mathrm{n} \tag{2}
\end{equation*}
$$

Calculation of energy transfer
$P=V \times I=2.8 \times 10^{6} \mathrm{~V} \times 2.0 \times 10^{-3} \mathrm{~A}=5.6 \times 10^{3} \mathrm{~W}$ OR 5.6 kW
One mark for value (1)
One mark for power of ten and unit (1) 2

Demonstration that energy is absorbed at rate of 17 GW per cubic metre:

$$
\begin{aligned}
& \frac{\text { Power }}{\text { Volume }}=\frac{5.6 \times 10^{3} \mathrm{~W}}{280 \times 10^{-6} \mathrm{~m} \times 1.2 \times 10^{-3} \mathrm{~m}^{2}}=1.66 \times 1010 \mathrm{~W} \mathrm{~m}^{-3} \\
& =17 \mathrm{GW} \mathrm{~m}^{-3}
\end{aligned}
$$

Substitution (1)

Calculation (1)

Suggested problem:
Very hot/target overheats/vaporises/difficult to cool OR other good relevant physics (1)
72. Explanation of how it can be deduced that magnetic field acts out of the plane:

Current flow in opposite direction to e^{-}movement/same as e^{+}movement (1) (Force acts into spiral) hence Fleming’s left-hand rule (gives field out of paper) (1)

Explanation of which e^{-}moves faster:
(the "atomic" electron) since path is straighter so r larger and

$$
r=\frac{m v}{B Q}(\mathbf{1})
$$

Calculation of momentum:

$$
\begin{aligned}
& p=B Q r=5.4 \times 10^{-3} \mathrm{~T} \times 1.6 \times 10^{-19} \mathrm{C} \times 0.048 \mathrm{~m}(\mathbf{1}) \\
& =4.1 \times 10^{-23} \mathrm{~N} \mathrm{~s} \mathbf{(1)}
\end{aligned}
$$

Explanation of why path of the positron is a spiral:
Positron continually losing speed/energy (by ionising) 1
Discussion of conservation of two properties:
Charge:
e^{+}and e^{-}(1)
recoiling electron and stationary positive ion (1)

Energy:
e^{+}and e^{-}creation (1)
since $E=m c^{2}$ (1)
E_{K} of recoiling electron (1)
E_{K} of e^{+}and e^{-}pair (1)
Ionisation energy (1)

Momentum:
Incoming photon momentum goes to recoil electron (mostly) (1)
After collision:
Momentum up = momentum down (1)
2 go up (one slightly) and only one goes down so down one is faster (1) Max 5
73. In this experiment alpha particles were
scattered by thin films of metals such as gold.
The experiment led to the conclusion that the atom had a
positively charged nucleus of diameter approximately $\mathbf{1 0}^{\mathbf{- 1 5}} \mathbf{~ m}$ and containing
most of the mass of the atom

